2100 h). It seemed unrelated to particular microhabitat structures (i.e., shallow water).

Hudson (1952, op. cit.) suggests a selective advantage for skittering locomotion in Acris crepitans when predated by fishes. In Goliath Frogs there might be an advantage when dealing with aquatic predators such as fishes, giant ottershrews (Potamogale velox), otters (Aonyx and Lutra spp.), and crocodiles (Crocodylus and Osteolaemus spp.). These are likely to approach frogs, perched on land, from the water and possibly can follow them under water after their escape with a single leap. The frog’s first escape phase on the water surface before submerging, as described here, might aid in confusing the predator and make predation less likely.

We thank the Cameron Ministry of Scientific and Technical Research (MINREST) and the Ministry of Environment and Forestry (MINEF) for granting permits. The traditional authorities of the Bakaka tribe gave us access to the study area. We thank Wolfgang Böhme for discussions and literature. We are grateful to Tchiengue Barthelemew, Echalle Solomon, Djire Dansala, Joseph Celestine for their help and support in the field.

Submitted by HANS-WERNER HERRMANN, Conservation and Research for Endangered Species (CRES), Zoological Society of San Diego, 15600 San Pasqual Valley Road Escondido, California 92027-7000, USA; present address: School of Natural Resources and Arizona Research Laboratories, University of Arizona, 1041 East Lowell 246b, Tucson, Arizona 85721, USA (e-mail: hwh@email.arizona.edu); and TAYLOR EDWARDS, Genomic Analysis and Technology Core, University of Arizona, 1041 E Lowell 246b, Tucson, Arizona 85721, USA (e-mail: taylore@u.arizona.edu).

CROSSODACTYLUS CARAMASCHII (NCN). MORTALITY.
Crossodactylus caramaschii is a diurnal, stream-dwelling anuran found in the Serra da Mantiqueira, state of São Paulo, southeastern Brazil (Bastos and Pombal 1995. Copeia 1995:436–439). The species calls from emergent rocks in forest streams, where their eggs are laid and the tadpoles develop. During Sept 2003 in the municipality of Apiaí (24°33′45″S, 48°48′45″W; 925 m elev.) in the Atlantic Forest of the state of São Paulo, Brazil, five dead or moribund C. caramaschii were collected. These frogs were found recently dead on the rocks of the stream (N = 2) or were heard calling and died shortly after collection (N = 3). This situation is similar to the pattern reported from localities where local extinctions have been associated with infection by the chytrid fungus Batrachochytrium dendrobatidis, which causes chytridiomycosis (Berger et al. 1998. Proc. Nat. Acad. Sci. USA, 95:9031–9036). Clinical signs of amphibian chytridiomycosis include abnormal posture, lethargy, and loss of righting reflex (Daszak et al. 1998. Emerg. Infect. Dis. 5[6]:735–748). The first record of B. dendrobatidis in Brazil was reported from Serra da Mantiqueira in Hyloides magalhaesi (Leptodactylidae), a diurnal, stream-dwelling frog closely related to Crossodactylus (Carnaval et al. 2005. Froglog 70:3). Although the dead or moribund C. caramaschii collected were not tested for the presence of B. dendrobatidis, the pattern of death observed suggests infection by this fungus. Therefore, B. dendrobatidis might be more widespread in Brazil than reported.

Identification of these frogs was verified by Vanessa K. Verdade, and four were catalogued at the Museu de Zoologia da Universidade de São Paulo (MZUSP 133906–909).

Submitted by RICARDO A. GUERRA-FUENTES, Museu de Zoologia da Universidade de São Paulo, Av. Nazaré, 481, CEP 04263-000, Brazil (e-mail: ricardoa@ib.usp.br); and MARIANNA DIXO, Universidade de São Paulo, Instituto de Biociências, Departamento de Ecologia, CEP 05508-900, Brazil.

HYLA CALCARATA (Rana de Espolones) and HYLA FASCIATA (NCN). DEFENSIVE BEHAVIOR. Anurans are known to display a wide variety of defensive behaviors to avoid predation. During a study conducted at two field sites (Tambopata Research Centre, Department of Madre de Dios and the Amazon Conservatory for Tropical Studies, Department of Loreto) in Amazonian Peru in May and June 2004, we observed and collected specimens of Hyla calcarata and H. fasciata. When individuals of these species were stimulated either through tapping on the head or grasped with the hand, we observed an unusual defensive behavior that was similar in both species. This behavior consists of closing the eyes, bringing the forelimbs to the head, positioning the thumb either beneath the lower jaw or beneath the lower edge of the eye, and positioning the remaining fingers splayed straight, either be-
low the lower edge of the eye or at eye level. We have used the term “boo behavior” to describe this behavioral pattern. We observed boo behavior in 11 of 14 *Hyla fasciata* (79%; museum vouchers: MUSM 19326, 19331, 19414, 19445, 19447, 21634, 21635) and in one *H. calcarata* (MUSM 19328). A somewhat similar behavior has been reported for *Boophis albilabris* (Andreone 2002. Herpetol. Rev. 33:299–300), although in the figure provided this species keeps the fingers scrunched together, whereas in *H. calcarata* and *H. fasciata* the fingers are stretched out.

The adaptive value of this behavior might reside in sending an “anti-signal” to potential predators, as it is possible that their search-image may be thrown off by a dramatic change in the familiar frog outline, as suggested by Channing and Howell (2003. Herpetol. Rev. 34:52). Alternately, an “increase” in head size, or making potential ingestion difficult by assuming this posture could account for this behavior. It is possible that this boo behavior might be phylogenetically constrained in *H. calcarata* and *H. fasciata*, but other related species need to be tested, in addition to performing necessary cladistic analyses.

We wish to thank Antje Chiu, Karina Quinteros, and Claudia Torres for help and company in the field. Thanks to Glenn K. Morris for helpful discussion. Support for fieldwork was provided through NSF grant number IBN-0078150 to D. Cannatella. We also thank the Instituto Nacional de Recursos Naturales (INRENA) of Peru for collecting permits (08 C/C-2004-INRENA-IANP and 032-2004-INRENA-IFFS-DCB).

Submitted by ARIADNE ANGULO, Museo de Historia Natural de San Marcos, Apartado 14-0434, Lima, Peru; and W. CHRIS FUNK, Section of Integrative Biology, University of Texas, 1 University Station C0930, Austin, Texas 78712, USA.

LEPTODACTYLUS LABYRINTHICUS (Labyrinthicus Frog).

PREY. *Leptodactylus labyrinthicus* belongs to the *pentadactylus* group and is one of the largest Brazilian frogs. Although its diet has been reported to be composed mostly of insects (França et al. 2004. Stud. Neotrop. Fauna Environ. 39:243–248), this species also preys on frogs and small snakes (Cardoso and Sazima 1977. Ciência e Cultura 29:110–1132; Sazima and Martins 1990. Mem. Inst. Butantan 52:73–79). During a bat survey in the Santuário Ecológico da Serra da Concórdia, municipality of Valença (600 m elev.), Rio de Janeiro, southeastern Brazil, we observed an attempt by *L. labyrinthicus* to prey upon a bat. At 2115 h, on 5 April 2005 while one of us was removing a Screaming Bat (*Anoura caudifer*) (mean mass 11 g) from a mist net, another bat, probably of the same species became entangled in the net for a few moments and then flew out a few centimeters above the ground. Immediately, a male *L. labyrinthicus* (340 g) captured the bat and started to ingest it. The bat was not completely swallowed because the wings remained opened. The frog released the bat as soon as the researcher caught it. Although this observation was possible only because of the bat becoming entangled in the net, a large number of small bats were observed in the area and it is possible the frog could catch additional bats.

C. F. Rocha (Ecology Department, UERJ) confirmed the identification of the frog which was deposited in the Museu Nacional, Rio de Janeiro (MNRJ N39310).

Submitted by CARLOS E. L. ESBE'ARD, TÁSSIA JORDÃO, LUCIANA M. COSTA and HELENA G. BERGALLO, Department of Ecology, UERJ, Rua São Francisco Xavier 524, 20550-013, Rio de Janeiro, RJ, Brazil (e-mail: cesberard@terra.com.br).

LEPTODACTYLUS MYSTACINUS (Shovel-Nosed Frog).

PAIRENTAL CARE. Species of *Leptodactylus* in the *fuscus* group are known to build foam nests in underground chambers (Lescure 1972. Ann. Mus. Hist. Nat. Nice. 1:91–100; Giaretta and Kokubum 2004. Herpetozoa 16:115–126). The observation reported herein was made in Uberlândia, Minas Gerais, Brazil. On 13 October 2004 (ca. 1900 h), we found a courting pair of *L. mystacinus* and followed them until they entered the nest chamber. We returned to the site the following night (1930 h) and found the chamber entrance sealed with soil and an individual (likely a male) of the species nearby (ca. 10 cm). We opened the entrance and found a foam nest within the chamber. We left the site for 1.5 h and upon our return the chamber entrance was sealed again and the frog...